четверг, 31 марта 2016 г.

ЭНЕРГИЯ ВОЛН МОРЕЙ И ОКЕАНОВ.

Эне́ргия волн океана — энергия, переносимая волнами на поверхности океана. Может использоваться для совершения полезной работы — генерации электроэнергии, опреснения воды и перекачки воды в резервуары. Энергия волн — неисчерпаемый источник энергии.
Мощность волнения оценивают в кВт на погонный метр, то есть в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. Конечно, в механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха — до 85 %.
Волновая энергия представляет собой сконцентрированную энергию ветра и, в конечном итоге, солнечной энергии. Мощность, полученная от волнения всех океанов планеты, не может быть больше мощности, получаемой от Солнца. Но удельная мощность электрогенераторов, работающих от волн, может быть гораздо большей, чем для других альтернативных источников энергии.
Несмотря на схожую природу, энергию волн принято отличать от энергии приливов и океанских течений. Выработка электроэнергии с использованием энергии волн не является распространённой практикой, в настоящее время в этой сфере проводятся только экспериментальные исследования.
Представляет интерес и использование энергии волн для движения судов (движители волновые). Удельная мощность волнения превышает удельную мощность ветра, т. е. размеры волнового привода могут быть существенно меньше, чем парусное оснащение. Качка судна, как правило, превышает по своей мощности мощность необходимой силовой установки. Волнение на море бывает даже в штиль. Волнение — это колебательный процесс. В отличие от ветра, который может дуть и против движения судна, волнение можно использовать при любом направлении движения фронта волн относительно судна. При шторме волновой привод может обеспечить судну достаточно энергии для борьбы со стихией.

Потенциал использования энергии волн.

Энергия морских волн значительно выше энергии приливов. Приливное рассеяние (трение, вызванное Луной) составляет порядка 2,5 ТВт. Энергия волн значительно выше и может быть использована значительно шире, чем приливная. Страны с большой протяжённостью побережья и постоянными сильными ветрами, такие как Великобритания и Ирландия, могут генерировать до 5 % требуемой электроэнергии за счёт энергии волн. В частности в Великобритании построен волновой генератор Oyster. Избыток генерируемой энергии (общая проблема всех непостоянных источников энергии) может быть использован для выработки водорода или алюминия.
Основная задача получения электроэнергии из морских волн — преобразование движения вверх-вниз во вращательное для передачи непосредственно на вал электрогенератора с минимальным количеством промежуточных преобразований, при этом желательно, чтобы большая часть оборудования находилась на суше для простоты обслуживания. Недавно выдан Российский патент № 82283 на механизм, позволяющий преобразовывать движения качания поплавка на волнах с любой амплитудой во вращение.дВыходной вал устройства вращается как от движения поплавка вниз, так и вверх. Механизм, находящийся на берегу, соединяется с поплавком штангой. Кроме того, механизмы можно секционировать на общий вал для получения большей суммарной мощности.
Еще одна Российская разработка волновой электростанции презентована в апреле 2013 года. Это поплавок-капсула, находящаяся в открытом море, которая при качании на волне производит электрическую энергию. Ocean RusEnergy удалось достичь уникальных результатов в удельных характеристиках свыше 4 кВт на одну тонну веса волнового генератора. Компания 4 декабря 2014 г. получила ежегодную бизнес-премию "Стартап года" как лучший бизнес проект Свердловской области.

Производители оборудования для волновых и приливных электростанций

вторник, 29 марта 2016 г.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ СОЛНЦЕ, ВЕТЕР, ВОДА, БИОМАССА, ВОЛНЫ, ПРИЛИВЫ, ТЕМПЕРАТУРА ЗЕМЛИ.


22 любопытных примера использования возобновляемой энергии


Солнце, ветер, вода, биомасса, волны и приливы, температура планеты — все это предоставляет красочные альтернативы невозобновляемым источникам энергии.
1


Айванпа
Расположенная в пустыне Мохаве в 70 километрах к юго-западу от Лас-Вегаса, Ivanpah Solar Electric Generating System представляет собой рабочий проект по сбору солнечной тепловой энергии. Мощность объекта — 392 мегаватта, использует он концентрированную солнечную энергию. 173 500 зеркал с гелиостатами растянулись на 14 квадратных километров, фокусируя солнечную энергию на котельных, расположенных на вершинах трех солнечных башен, в которых рождается пар, вращающий обычную паровую турбину. Этот проект — построенный Bechtel, принадлежащий NRG Solar, Google и BrightSource Energy.
01
Уарзазат
Вид с воздуха на солнечный завод в Уарзазате, центральное Марокко. Крупнейший в мире солнечный завод использует фотовольтаику, извлекая пользу из пекла Сахары.
01
Офис AGL Docklands
Солнечные панели можно увидеть на крыше офиса Docklands AGL Energy в Мельбурне, Австралия. Солнечная система на крыше покрывает 20 000 квадратных метров и вырабатывает порядка 110 000 кВт·ч электричества в год.
01
Солнце Вегаса
Это 102-акровая 15-мегаваттная станция Solar Array II Generatin Station на авиабазе ВВС США Неллис в Лас-Вегасе, штат Невада. В сочетании с 13,2-мегаваттным проектом Nellis Solar Star, завершенным в 2007 году, Неллис стал крупнейшей солнечной фотовольтаической системой Департамента обороны США. Во время дневных солнечных часов два солнечных поля в сумме удовлетворяют почти все потребности базы в энергии, или 42% от всех требований по электричеству. Энергия массива, которая не используется, уходит в сетку NV Energy и обратно в местную общину.
01
Фотовольтаические панели
Фотовольтаические ячейки покрывают 426 квадратных метров 70-метрового южного фасада дома с апартаментами в Берлине, Германия. Фотовольтаические ячейки заменяют обычные фасадные плиты и вырабатывают порядка 25 000 кВт·ч солнечного электричества в год, которое уходит в общественную сеть и на питание башен-близнецов. Это помогает снизить операционные расходы, которые бьют по карману резидентов.
01
PS10
Солнечный завод PS10 в Санлукар-ла-Майоре за пределами Севилье, Испания, был первой коммерческой солнечной башней в мире, построенной испанской компанией Solucar. Он может обеспечить электричеством до 6000 домов.
01
Небольшая семейная ГЭС
Семья Шнайдеров (основателей Natel Energy) установила небольшую ГЭС на существующем, но ранее не механизированном оросительном канале в Мадрасе, штат Орегон. Станция вырабатывает электричество с помощью двигателя Schneider Linear Hydri Engine. Один из первых в своем роде таких проектов был вскоре куплен компанией Apple, чтобы помочь решить энергетический вопрос на одном из дата-центров.
01
Геотермальная электростанция ICE
Это градирни для геотермальной электростанции, которой управляет Costa Rican Electricity Institute (ICE). Компания решила добывать все электричество для нации из источников возобновляемой энергии, используя ГЭС и сочетание ветряной, солнечной и геотермальной энергии.
01
Наземные ветряные фермы
В 2015 году ветряная индустрия установила больше вырабатывающих электричество вышек, чем любая другая энергетическая индустрия в Америке. San Gorgonio Pass Wind Farm (ниже) — это одна из трех крупных ветряных ферм в Калифорнии, включающая более 3000 ветряных турбин, вырабатывающих 615 МВт «зеленого» электричества.
01
Наводные ветряные фермы
Европа — мировой лидер по строительству ветряных ферм недалеко от своих берегов. Londo Array — это крупнейшая наводная ветряная ферма, которая начала работать 8 апреля 2013 года в 20 километрах от берега Кент и Эссекс, Англия. Максимальная мощность фермы — 630 МВт — обеспечивается 175 турбинами, и ее достаточно, чтобы запитать 500 000 домов.
01
AK-1000
AK-1000 — одна из крупнейших турбин приливной энергии в мире, разработанная Atlantis Resources. В высоту она двадцать с лишним метров, весит — 1,3 тонны, а испытывалась у побережья Оркни в Шотландии. По завершении проект MeyGen — крупнейший в мире приливно-паровой проект и массив из 269 AK-1000 — как ожидается, будет вырабатывать до 398 мегаватт энергии, достаточной, чтобы обеспечить питанием 200 000 домов, или половину Шотландии.
01
Тепло из глубин
Станции по использованию геотермальной энергии добывают ее глубоко из недр земли. Как, например, станция Salton Sea в Калипатрии, штат Калифорния, расположенная на юге разлома Сан-Андреас. Эта станция находится возле геотермального поля месторождения Солтон, где температуры достигают 360 градусов по Цельсию на глубине 1500–2500 метров.
01
Лавовая любовь
Геотермальная энергетическая станция Nesjavellir (NGSP) — это вторая по размерам геотермальная станция в Исландии, расположенная возле Тингвеллира и вулкана Хенгилл. Станция вырабатывает порядка 120 МВт электрической энергии и подает 1100 литров горячей воды (82-85 градусов) в секунду.
01
Энергостанция Krafla — это 60-мегаваттная геотермальная энергостанция возле вулкана Крафла в Исландии. Она добывает тепло более чем из 30 скважин.
01
Энергия сточных вод
Новый дата-центр в США вырабатывает электричество для своих серверов целиком из возобновляемых источников, преобразуя биогаз с завода по обработке сточных вод в электричество и воду. Siemens реализовала этот пилотный проект, который начал работать в 2014 году, вместе с Microsoft и FuelCell Energy.
01
Преобразователь энергии волн Pelamis
Разработанный шотландской компанией Pelamis Wave Power, преобразователь энергии волн Pelamis — это технология, которая использует движение волн на поверхности океана для выработки электричества. Похожая на змею машина состоит из соединенных сегментов, которые изгибаются по мере прохождения волн, и это движение вырабатывает электричество. Первая волновая машина, вырабатывающая электричество на воде, была подключена к британской энергосети в 2004 году. Теперь компания сосредоточила свои усилия на новой машине P2, которую испытывают в Оркни, Шотландия, с 2010 года.
01
TidGen
TidGen Power System, разработанная Ocean Renewable Power Company, должна вырабатывать чистое электричество из приливов и глубоководных рек. Четырехтурбинная установка опускается на дно океана, используя либо зафиксированную на глубине раму, либо плавучую систему швартовки, определяющую состояние воды. В зависимости от пиковой скорости потока, емкость турбин TidGen по паспорту может достигать 600 кВт.
01
SeaGen
SeaGen — это первая в мире коммерческая станция, вырабатывающая электричество из энергии приливов. Введенная в эксплуатацию в 2008 году, 1,2-мегаваттная станция находится в проливе естественной гавани Стрэнгфорд-Лох в Ирландском море и может обеспечить электричеством до 1500 домов. Энергию вырабатывают два гигантских подводных ротора, движимых мощными водными потоками по 20 часов на дню, во время приливов и отливов.
01
Azura
Azura — это устройство, работающее на энергии волн, которое проходит испытания в гавайском корпусе морпехов ВМС США. В отличие от других технологий на энергии волн, Azura выделяет энергию как из вертикальных, так и горизонтальных движений волн и может вырабатывать 20 киловатт энергии.
01
WS-4
Четыре ветряных турбины с вертикальной осью вращения (WS-4B) с винтовым ротором Savonius на станции Да Чжиньшан в Китае. 4B хорошо подходит для масштабного развертывания в суровых ветряных условиях в удаленной местности или на воде, если необходим электрический выход средней мощности.
01
Ветротурбины новой эпохи
Ветряные турбины с вертикальной осью типа Дарье на ветряной ферме Altamont Pass в Северной Калифорнии — одни из первых в США. Эта ветряная ферма состоит из почти пяти тысяч относительно небольших ветряков разных типов общей мощностью в 576 мегаватт, вырабатывающих 125 мегаватт в среднем и 1,1 тераватт-часа ежегодно.
0101
Год штопора
Эта компактная ветряная турбина была разработана Университетом штата Кливленд для Кливленда и вырабатывала электричество с 2012 по 2013 год. 15 метров высотой, 6 метров шириной, эта турбина служила в испытательных целях, используя пять ветряных турбин поменьше, размещенных в своеобразном «штопоре» из жесткого пластика, повышающих выработку энергии при небольших скоростях ветра.
01
01

среда, 23 марта 2016 г.

Подземная гидроэлектростанция.

В Израиле хотят построить «мертвоморскую» гидроэлектростанцию

В ближайшие месяцы «Хеврат Хашмаль», водная компания «Мекорот» и группа частных предпринимателей представят правительству план создания первой в Израиле гидроэлектростанции. И не просто ГЭС, а подземной электростанции, использующей энергию средиземноморской воды, перебрасываемой по туннелю в Мертвое море. Перепад высот между уровнем моря и самым низким на планете местом создаст мощный поток, который приведет в движение турбины.
Идея не новая — о ней мечтал еще провозвестник еврейского государства Теодор Герцль. Замысел был предложен министерству инфраструктур, когда его возглавлял Узи Ландау. Он включает прокладку 100-километрового туннеля от Ашкелона к Мертвому морю и строительство подземной электростанции мощностью 1500 мегаватт.
Газета «Глобс» сообщает, что разработчики намерены поручить осуществление проекта компании Citrine, руководимой бывшим начальником бюджетного отдела Минфина Галем Гершковицем. Проект считается осуществимым с технической точки зрения и оправданным с финансовой: по расчетам, его стоимость не превышает 3 млрд шекелей, которые полностью поступят от частных инвесторов.
Ряд международных компаний, специализирующихся на строительстве туннелей для транспортировки воды уже выразили желание участвовать в уникальном проекте.
ГЭС создаст сотни рабочих мест в Негеве: в строительстве, которое по плану продолжится 7 лет, примут участие более 2 тысяч рабочих и инженеров. Сотни людей будут работать на готовой станции.
У компании «Мекорот» есть свои виды на ГЭС. Она планирует построить рядом с нею опреснительные установки, и вода, которая приводит в движение турбины может быть направлена на орошение сельскохозяйственных угодий в пустыне Негев. Ну просто «город-сад»! У проекта одни плюсы: прокладка туннелей в последние годы стала значительно дешевле, гидроэнергетика не требует углеводородов для производства электроэнергии. Объем «зеленой» энергии в Израиле увеличится таким образом с 2,5% до 17%. Остается только понять, какое влияние окажет на Мертвое море значительно менее соленая средиземноморская вода, и как это соотносится с израильско-иорданским проектом строительства канала, соединяющего Красное море с Мертвым.

суббота, 19 марта 2016 г.

МАЛАЯ ГИДРОЭНЕРГЕТИКА РОССИИ.

Малая гидроэнергетика

Нетрадиционной энергетике последнее время уделяется пристальное внимание во всем мире. Заинтересованность в использовании возобновляемых источников энергии - ветра, солнца, морского прилива и речной воды, - легко объяснима: нет нужды закупать дорогостоящее топливо, имеется возможность использовать небольшие станции для обеспечения электроэнергией труднодоступных районов. Последнее обстоятельство особенно важно для стран, в которых имеются малонаселенные районы или горные массивы, где прокладка электросетей экономически нецелесообразна.

Две трети территории России не подключено к энергосистеме

В России зоны децентрализованного энергоснабжения составляют более 70% территории страны. До сих пор у нас можно встретить населенные пункты, в которых электричества не было никогда. Причем не всегда это поселения Крайнего Севера или Сибири. Электрификация не затронула, например, некоторые уральские поселки - края, который вряд ли назовешь неблагополучным с точки зрения энергетики. Между тем, электрификация отдаленных и труднодоступных населенных селений - дело не такое уж и сложное. Так, в любом уголке России найдется речка или ручей, где можно установить микроГЭС.
Малые и микроГЭС - объекты малой гидроэнергетики. Эта часть энергопроизводства занимается использованием энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности (от 1 до 3000 кВт). Малая энергетика получила развитие в мире в последние десятилетия, в основном из-за стремления избежать экологического ущерба, наносимого водохранилищами крупных ГЭС, из-за возможности обеспечить энергоснабжение в труднодоступных и изолированных районах, а также, из-за небольших капитальных затрат при строительстве станций и быстрого возврата вложенных средств (в пределах 5 лет).

Где можно установить небольшую гидроэлектростанцию?

Гидроагрегат малой ГЭС (МГЭС) состоит из турбины, генератора и системы автоматического управления. По характеру используемых гидроресурсов МГЭС можно разделить на следующие категории: новые русловые или приплотинные станции с небольшими водохранилищами; станции, использующие скоростную энергию свободного течения рек; станции, использующие существующие перепады уровней воды в самых различных объектах водного хозяйства - от судоходных сооружений до водоочистных комплексов (а сейчас уже существует опыт использования питьевых водоводов, а также промышленных и канализационных стоков). Использование энергии небольших водотоков с помощью малых ГЭС является одним из наиболее эффективных направлений развития возобновляемых источников энергии и в нашей стране. Основные ресурсы малой гидроэнергетики в России сосредоточены на Северном Кавказе, на Дальнем Востоке, на Северо-Западе (Архангельск, Мурманск, Калининград, Карелия), на Алтае, в Туве, в Якутии и в Тюменской области. В ЭТИХ РАЙОНАХ ВЕДЁТСЯ СТРОИТЕЛЬСТВО МАЛЫХ ГЭС.
МикроГЭС (мощностью до 100 кВт) можно установить практически в любом месте. Гидроагрегат состоит из энергоблока, водозаборного устройства и устройства автоматического регулирования. Используются микроГЭС как источники электроэнергии для дачных поселков, фермерских хозяйств, хуторов, а также для небольших производств в труднодоступных районах - там, где прокладывать сети невыгодно.

Малая энергетика востребована всего на 1%

Технико-экономический потенциал малой гидроэнергетики в России превышает потенциал таких возобновляемых источников энергии, как ветер, солнце и биомасса, вместе взятых. В настоящее время он определен в размере 60 млрд. кВт-ч в год. Но используется этот потенциал крайне слабо: всего на 1%. Не так давно, в 1950-60-х годах, у нас действовало несколько тысяч МГЭС. Сейчас - всего лишь несколько сотен - сказались результаты перекосов в ценовой политике и недостаточное внимание к совершенствованию конструкций оборудования, к применению более совершенных материалов и технологий.

К вопросу экологии

Одним из основных достоинств объектов малой гидроэнергетики является экологическая безопасность. В процессе их сооружения и последующей эксплуатации вредных воздействий на свойства и качество воды нет. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения. Однако и помимо этого у микро и малых ГЭС немало достоинств. Современные станции просты в конструкции и полностью автоматизированы, т.е. не требуют присутствия человека при эксплуатации. Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению, причем станции могут работать как в автономном режиме, т.е. вне электросети энергосистемы края или области, так и в составе этой электросети. А полный ресурс работы станции - не менее 40 лет (не менее 5 лет до капитального ремонта). Ну а главное - объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.
Источник ЭнергоСовет.

пятница, 18 марта 2016 г.

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ РОССИИ.

Возобновляемые источники энергии в регионах Российской Федерации: проблемы и перспективы



Рубрика: Возобновляемые источники энергии
Автор: О.С. Попель

О.С. Попель, председатель Научного совета РАН по нетрадиционным возобновляемым источникам энергии, заведующий Лабораторией возобновляемых источников энергии и энергоснабжения Объединенного института высоких температур РАН, член Экспертного совета Координационного совета Президиума Генерального совета Всероссийской политической партии «ЕДИНАЯ РОССИЯ» по вопросам энергосбережения и повышения энергетической эффективности

Введение

Сегодня возобновляемые источники энергии (ВИЭ) привлекают все большее внимание, как простых людей, так и руководств многих государств, международных организаций. На заседаниях Большой восьмерки (двадцатки) в последнее время регулярно обсуждаются нарастающие проблемы энергетики и экологии, решение которых в мировом масштабе в будущем не представляется возможным без широкого использования экологически чистых ВИЭ.
Как ни печально, но следует признать, что в отличие от многих других стран в России ясной и последовательной государственной политики в области ВИЭ пока не сформулировано. Политические декларации о важности ВИЭ пока не подкреплены необходимым набором законодательных актов и нормативных документов, стимулирующих использование ВИЭ и определяющих «правила игры» для инвесторов и потребителей «зеленой энергии». Отношение к ВИЭ в России полярное. Есть энтузиасты, которые настаивают на том, что ВИЭ нам нужно использовать как можно шире уже прямо сейчас, а есть пессимисты, в основном из среды топливно-энергетического комплекса, которые утверждают, что для России, являющейся энергетической державой с огромными запасами органических топлив, ВИЭ малоперспективны, в обозримом будущем не смогут внести заметный вклад в энергобаланс страны и поэтому ими всерьез заниматься пока не следует.
В своей статье я хотел бы постараться объективно осветить проблему, дать общую картину, что происходит с возобновляемыми источниками энергии в мире и обосновать, насколько они актуальны для России.
Возобновляемые источники включают широкий спектр источников энергии и технологий их преобразования в полезные для человека виды (электричество, тепло, холод, печные и моторные топлива и т.п.). Большая часть ВИЭ имеют солнечное происхождение (само солнечное излучение, ветер, водные потоки, биомасса). К «не солнечным» относятся геотермальная энергия, морские приливы, сбросное тепло антропогенного происхождения и др. Отмечу, что все известные источники в той или и иной степени могут претендовать на то, чтобы найти эффективное применение в том или ином секторе экономики.
 1

Стимулы развития ВИЭ в мире

Основными стимулами развития возобновляемых источников в мире являются следующие обостряющиеся со временем проблемы, стоящие перед человечеством:
  • 1. Как обеспечить возрастающие энергетические потребности быстро растущего населения мира? В начале ХХI века мировое потребление энергии превысило 500 ЭДж/год (1 ЭДж = 1018 Дж) или около 12 млрд тн.э./год. По различным прогнозам уже к 2020г. мировое энергопотребление возрастет более чем в полтора раза, в первую очередь, за счет развивающихся стран (рост населения с одновременным повышением удельного в расчете на 1 человека потребления энергии). В условиях постепенного истощения дешевых запасов органического топлива возможность полного и с приемлемыми затратами удовлетворения растущих энергетических потребностей вызывает серьезные опасения. Ядерная энергетика после ряда серьезных аварий на АЭС пока не вызывает доверия общественности, да и ее полноценное развитие возможно лишь при переходе на новые типы реакторов-размножителей, обеспечивающих воспроизводство ядерного топлива, что сопряжено с необходимостью освоения новых технологий и определенными дополнительными рисками. Термоядерная энергетика пока не вышла из стадии фундаментальных исследований, и сроки ее возможного промышленного освоения пока не предсказуемы. В этой ситуации ставка на расширение масштабов использования ВИЭ, ресурсы которых по сравнению с обозримыми энергетическими потребностями человечества практически неограниченны, несмотря на повышенные затраты, представляется вполне оправданной.
  • 2. Как обеспечить энергетическую безопасность стран и регионов, сильно зависящих от импорта энергоресурсов? Эта проблема стоит еще более остро и актуально, чем предыдущая. Мир довольно жестко поделен на страны экспортеры и импортеры энергоресурсов. Месторождения органических топлив и урана по миру распределены крайне «несправедливо», что вызывает экономические и политические кризисы и создает напряженность в мире. ВИЭ распределены по странам мира более или менее равномерно и доступны в том или ином виде и количестве в любой географической точке, что обусловливает их дополнительную привлекательность.
  • 3. Как обеспечить экологическую безопасность? Масштабы современной энергетики пока еще малы в рамках природного энергетического баланса: потребление энергии человечеством составляет всего около 2/10000 суммарного поступления энергии солнечного излучения на поверхность Земли. Вместе с тем, в сравнении с энергией, идущей на процессы фотосинтеза (около 40 ТВт), мировая энергетика соизмерима и, по оценкам, достигает около 20% от нее, что указывает на принципиальную возможность заметного глобального влияния энергетики на биосферу. Энергетика ответственна примерно за 50% всех вредных антропогенных выбросов в окружающую среду, в том числе парниковых газов. Не вызывает сомнений, что ВИЭ более экологически безопасны, чем традиционные источники.
Немаловажными аргументами в пользу развития ВИЭ являются также:
  • забота о будущих поколениях: энергетика - крайне инерционная сфера экономики, продвижение новых энергетических технологий занимает десятки лет, необходима диверсификация первичных источников энергии, в том числе за счет разумного использования ВИЭ;
  • многие технологии энергетического использования ВИЭ уже подтвердили свою состоятельность и за последнее десятилетие продемонстрировали существенное улучшение технико-экономических показателей. Удельные капитальные затраты на создание энергоустановок на ВИЭ и стоимость генерируемой ими энергии приблизились к аналогичным показателям традиционных энергоустановок, и в ряде случаев использование ВИЭ в некоторых регионах и практических приложениях стало вполне конкурентоспособным.

Недостатки ВИЭ

Справедливости ради необходимо отметить, что ВИЭ имеют как массу достоинств, так и существенные недостатки. К недостаткам, прежде всего, относится то, что ВИЭ характеризуются, как правило, небольшой плотностью энергетических потоков: солнечное излучение - менее 1 кВт на 1 м2, ветер при скорости 10 м/с и поток воды при скорости 1 м/с - около 500 Вт на 1 м2. В то время как в современных энергетических устройствах, мы имеем потоки, измеряемые сотнями киловатт, а иногда и мегаваттами на 1 м2. Сбор, преобразование и управление энергетическими потоками малой плотности, в ряде случаев имеющих суточную, сезонную и погодную нестабильность, требуют значительных затрат на создание приемников, преобразователей, аккумуляторов, регуляторов и т.п. Высокие начальные капитальные затраты, правда, в большинстве случаев компенсируются низкими эксплуатационными издержками.
Важно подчеркнуть, что использование ВИЭ оказывается целесообразным, как правило, лишь в оптимальном сочетании с мерами повышения энергоэффективности: например, бессмысленно устанавливать дорогие солнечные системы отопления или тепловые насосы на дом с высокими тепловыми потерями, неразумно с помощью фотоэлектрических преобразователей обеспечивать питание электроприборов с низким КПД, например, систем освещения с лампами накаливания.
 2

Практика использования ВИЭ в мире

Каковы масштабы практического использования ВИЭ в мире? Имеющиеся данные позволяют утверждать, что в мире наблюдается бум возобновляемой энергетики.
Установленная мощность электрогенерирующих установок на нетрадиционных ВИЭ (без крупных ГЭС) к концу 2008 г. достигла 280 ГВт, а в 2010 г. превысила мощность всех атомных электростанций - 340 ГВт. Суммарная мощность 150 тыс. ВЭУ в составе сетевых ветростанций на конец 2009 г. составила 159 ГВт. За 2009 г. в эксплуатацию было введено 39 ГВт ВЭУ, их установленная мощность по сравнению с концом 2008 г. (120 ГВт) выросла на 32%. Выработка ими электроэнергии в 2009 г. достигла 324 ТВт×ч.
Суммарная мощность действующих в мире фотоэлектрических преобразователей (ФЭП) к концу 2009 г. достигла 21,3 ГВт, причем в 2009 г. в эксплуатацию было введено более 7 ГВт, а прирост продаж ФЭП на мировом рынке за год составил более 50%. Годовая выработка ими электроэнергии в 2009 г. составила 23,9 ТВт×ч.
Суммарная мощность энергоустановок на биомассе в 2009 г. достигла 60 ГВт, а годовая выработка электроэнергии более 300 ТВт×ч.
Мощность геотермальных электростанций превысила 10,7 ГВт, а выработка ими электроэнергии 62 ТВт×ч/год.
Суммарная тепловая мощность установок солнечного теплоснабжения в 2008 г. достигла 145 ГВт (более 180 млн м2 солнечных коллекторов), солнечное горячее водоснабжение имеет более 60 млн домов в мире, ежегодные темпы роста более 15%.
Производство биотоплив (этанол и биодизель) в 2008 г. превысило 79 млрд литров в год (около 5% от ежегодного мирового потребления бензина, биоэтанол - 67, биодизель - 12 млрд литров в год. По сравнению с 2004 г. производство биодизеля возросло в 6 раз, а биоэтанола удвоилось).
В 30 странах мира действует более 2 млн тепловых насосов, суммарной тепловой мощностью более 30 ГВт, утилизирующих природное и сбросное тепло и обеспечивающих тепло- и холодоснабжение зданий.
В настоящее время около 100 стран имеют специальные государственные программы освоения ВИЭ и на государственном уровне утвержденные индикативные показатели их развития на среднесрочную и долгосрочную перспективу. Большинство стран ставят своей целью добиться вклада ВИЭ в энергобаланс страны на уровне не менее 15-20% к 2020 г., а страны Европейского Союза - до 40% к 2040 г. Приоритетное развитие ВИЭ с темпами роста в десятки процентов в год осуществляется при мощной государственной законодательной, финансовой и политической поддержке.
 3

ВИЭ в России

Что же происходит в России? Нужно ли в России форсировать развитие использования ВИЭ?
С точки зрения макроэкономических показателей, Россия, казалось бы, с избытком обеспечена традиционными энергоресурсами. Анализ энергобаланса показывает, то из всех добываемых в стране энергоресурсов около 2/3 экспортируется за рубеж. 45% - в натуральном виде, еще около 13% - в виде энергоемкой продукции низкого передела (металл, удобрения и т.п.), около 6% - приходится на энергию, затрачиваемую на транспорт энергоресурсов и указанной продукции по территории России за рубеж. Что касается нефти, то сегодня 80% всей добываемой в стране нефти экспортируется. Утвержденная Энергетическая стратегия России на период до 2030 г. фактически предусматривает лишь незначительное относительное снижение экспорта энергоресурсов. Экспортная ориентация во многом обусловлена тем, что нефтегазовый комплекс страны обеспечивает около 17% российского ВВП и более 40% доходов консолидированного бюджета, и отказаться от таких доходов крайне сложно. Возникает, однако, вопрос: насколько такая политика дальновидна и стратегически обоснована?
Успокаивает, видимо, то что, по имеющимся оценкам, Россия занимает 1 место по запасам природного газа (23% мировых запасов), 2 место по запасам угля (19% мировых запасов), 5-7 место по запасам нефти (4-5% мировых запасов). На Россию приходится 8% мировой добычи природного урана. Однако и в России легкодоступные месторождения относительно дешевых энергоресурсов быстро истощаются, а разведка и освоение новых месторождений требует огромных затрат. Очевидно, что энергетическая политика страны уже в ближайшее время потребует серьезной коррекции в сторону более рачительного использования энергоресурсов.
С точки зрения международных обязательств России по экологии в стране пока все обстоит благополучно. Резкое падение производства в 1990-2000 гг. привело почти к 40% сокращению выбросов СО2 в атмосферу.
Оценки показывают, что даже без принятия специальных мер к 2030 г. объемы выбросов не достигнут уровня 1990 г., и проявлять особого беспокойства по этому поводу не требуется.
Приведенные данные, казалось бы, на стороне пессимистов: возобновляемые источники энергии для России при макроэкономическом анализе представляются не актуальными.
Однако давайте теперь посмотрим на Россию, немного с других позиций: с позиций регионов страны и конкретных потребителей энергии.
Факты говорят о том, что:
  • 2/3 территории страны с населением около 20 млн человек находится вне сетей централизованного энергоснабжения. Это - районы страны с наиболее высокими ценами и тарифами на топливо и энергию (10-20руб./кВт и выше);
  • большая часть регионов страны реально энергодефицитны, нуждаются в завозе топлива и поставке энергии. Для них столь же актуально решение проблемы региональной энергетической безопасности, как и для стран-импортеров энергоресурсов;
  • в нашей стране, являющейся газовой державой, газифицировано лишь около 50% городских и около 35% сельских населенных пунктов. Здесь используется уголь, нефтепродукты, являющиеся источниками локального загрязнения окружающей среды;
  • в условиях постоянного роста тарифов и цен на энергию и топливо, растущих затрат на подключение к сетям централизованного энергоснабжения автономная энергетика в стране развивается опережающими темпами: ввод за последние 10 лет дизельных и бензогенераторов единичной мощностью до 100кВт превысил ввод крупных электростанций. Потребители энергии стремятся обеспечить себя собственными источниками электроэнергии и тепла, что, как правило, ведет к снижению эффективности использования топлива по сравнению с комбинированным производством электроэнергии и тепла на ТЭЦ и снижению эффективности всей энергетики страны.

Технико-экономические оценки показывают, что именно районы с децентрализованным и автономным энергоснабжением являются наиболее привлекательными для эффективного использования нетрадиционных возобновляемых источников энергии.
Необходимо проведение целенаправленных исследований и разработок в обоснование эффективности практического использования ВИЭ в конкретных условиях с учетом реальных климатических условий и особенностей потребителей. Крайне важно при поддержке региональных властей создание сети демонстрационных объектов, наглядно показывающих преимущества использования ВИЭ и служащих центрами развития бизнеса в этом секторе энергетики.
Вклад нетрадиционных ВИЭ (без крупных ГЭС) в энергобаланс России пока не превышает 1%. Принятые в последнее время государственные решения предписывают довести вклад ВИЭ к 2020 г. до 4,5%, что потребует ввода энергоустановок на ВИЭ суммарной мощностью 20-25 ГВт. Однако эти решения пока не подкреплены должным образом законодательством и нормативными актами, не приняты принципиальные решения о стимулировании развития ВИЭ, что делает проблематичным выполнение принятых решений.
Россия существенно отстает от ведущих стран по разработке и освоению технологий использования ВИЭ. Тем не менее, имеются примеры реализации успешных проектов в этой области. Это относится к созданию нескольких геотермальных станций на Камчатке, ввод которых позволил существенно сократить объемы завоза дизельного топлива в этот регион. Частный бизнес осуществил «прорыв» в освоении производства древесных пеллет из отходов деревопереработки. Россия вошла в число мировых лидеров по объему производства пеллет (более 2 млн т в год). К сожалению, они производятся преимущественно для экспорта в европейские страны, внутри страны эффективное их использование пока сдерживается административными и экономическими барьерами. Имеются определенные успехи в создании приливных энергоустановок с использованием оригинальных отечественных разработок. Ряд компаний уделяют большое внимание освоению технологий масштабного производства фотоэлектрических преобразователей, но, опять же, с ориентацией преимущественно на экспорт.

Выводы и предложения

Итак, несмотря на то, что Россия, безусловно, лучше, чем любая другая страна в мире, обеспечена собственными запасами традиционных топливно-энергетических ресурсов, развитие возобновляемых источников энергии является крайне важным стратегическим направлением будущей энергетики. Необходимость ускоренного развития ВИЭ уже сегодня в России обусловлено как потребностями в обеспечении энергетической безопасности регионов страны находящихся вне систем централизованного энергоснабжения, где многие технологии использования ВИЭ достигли уровня конкурентоспособности, так и потребностями создания надежного задела в инновационном развитии энергетики страны для будущих поколений.
Если в автономной энергетике многие технологии использования ВИЭ уже сегодня могут быть вполне конкурентоспособными, то в централизованной энергетике требуется реализация мер государственной экономической поддержки по аналогии с другими странами. В этой сфере крайне важно ускорение принятия предусмотренных распоряжениями Правительства нормативных документов, стимулирующих развитие ВИЭ.
  • Ускоренное развитие ВИЭ в России необходимо рассматривать как важный фактор модернизации экономики, в том числе связанной с развитием инновационных производств, разработкой новых инновационных технологий, развитием малого и среднего бизнеса, созданием новых рабочих мест, улучшением социальных условий, улучшением экологии и т.п.


Государство должно быть заинтересованным в развитии ВИЭ и активно содействовать развитию этого нового направления в энергетике, прежде всего, путем создания стимулов для бизнеса. При этом участие государства в развитии ВИЭ не должно стать благотворительностью за счет налогоплательщика, а государственным бизнесом. Каждый затраченный бюджетный рубль на поддержку ВИЭ должен стать окупаемым, он, как показывают оценки и опыт других стран, может и должен приносить прибыль в бюджет в результате развития бизнеса.