понедельник, 31 декабря 2018 г.

МОРСКАЯ ВОЛНОВАЯ ГИДРОЭЛЕКТРОСТАНЦИЯ

Морской волновой прибрежный электрогенератор



Волновая электростанция – электростанция, расположенная в водной среде, целью которой является получение электроэнергии из кинетической энергии волн.
Автором создано устройство оригинальной конструкции, позволяющее добывать энергию в прибрежной зоне.


Громадный потенциал

Потенциал волн огромен: он оценивается более чем в 2 млн МВт. Наиболее пригодны для волновой энергетики западное побережье Европы, северное побережье Великобритании и тихоокеанское побережье Северной, Южной Америки, Австралии и Новой Зеландии, а также побережье Южной Африки. Но и в других местах энергию волн можно использовать.

Еще в 1799 г. во Франции была подана первая заявка на патент волновой мельницы. С тех пор энергию волн пытались использовать неоднократно. Интерес особо увеличился после нефтяного кризиса в 1973 г. А в 2008 г. в Португалии, в районе Агусадора вошла в эксплуатацию первая волновая электростанция. Она расположена в 5 км от берега. Мощность ее составляет 2,25 МВт, что хватает для обеспечения электроэнергией примерно 1600 домов. Проект электростанции принадлежит шотландской компании «Pelamis Wave Power».

Электростанция состоит из трех больших плавающих объектов Pelamis P-750 змеевидного типа длиной 120 метров. Объекты состоят из секций, между которыми закреплены гидравлические поршни. Внутри каждой секции также есть гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их изгибаться. Движение этих соединений приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение масло. Масло проходит через гидравлические двигатели. А гидравлические двигатели приводят в движение электрические генераторы, которые производят электроэнергию.

Планировалось добавить к трем существующем конвертерам еще 25, что увеличит мощность электростанции до 21 МВт. Такой мощности хватит для обеспечения электроэнергией 15 ­ 000 домов и снизит выбросы углекислого газа на 60  000 тонн в год.



Другие проекты

В 2009 г. у берегов Оркнейских островов, в северной части Шотландии, было запущено еще одно уникальное сооружение. Это генератор «Oyster» («Устрица»). Он представляет собой большой поплавок-насос, который раскачивается волнами вперед и назад и приводит, таким образом, в движение двухсторонний насос, расположенный на дне, на глубине около 16 м. Вся электрическая часть устройства вынесена на берег, а связь между двумя частями – поплавком-насосом и береговой электростанцией – осуществляется через трубу, по которой морская вода под давлением устремляется к гидроэлектрогенератору. Максимальная мощность системы – 600 кВт.

На территории Москвы планировалось строительство производственного научно-исследовательского предприятия, которое будет разрабатывать модуль поплавковой волновой электростанции. А ученые УрФУ разработали мобильную волновую электростанцию. Кроме того, в России планировалось построить волновой генератор «Ocean 160».

А в Великобритании, у побережья Корнуолла, – электростанцию «Wave Hub» мощностью в 20 МВт. Здесь комплекс генераторов соединяется с берегом при помощи силового кабеля. Сам комплекс работает за счет вертикального перемещения поплавков, которые скользят по колоннам, заякоренным у дна. Общая мощность системы из 400 буев запланирована на 50 МВт.

Это крупнейшая волновая электростанция в мире. Буи расположены в море начиная с расстояния 16 км от берега и дальше, на протяжении 1800 м.

Буи устроены следующим образом. Колонна содержит внутри генератор, который за счет системы поршней приводится в движение, и вырабатывает электричество, когда буй колеблется на волнах. Электрический ток от каждого буя передается по проводам на подводную подстанцию, от которой силовой кабель передает электроэнергию на сушу.



Проблемы и преимущества

Основная проблема при создании волновых электростанций связана с тем, что штормовые волны гнут и сминают даже стальные лопасти водяных турбин. Поэтому приходится применять методы искусственного снижения мощности, отбираемой от волн. Кроме того, они могут представлять опасность для безопасного плавания.

Тем не менее у таких станций есть и свои преимущества. Они могут выполнять роль волногасителей, защищая гавани и берега от разрушения. Некоторые маломощные типы могут устанавливаться на стенках причалов и опорах мостов, уменьшая воздействие волн на них. При преобразовании энергии волн эффективность может существенно превышать прочие альтернативные способы, такие, как ветряные и солнечные электростанции, достигая коэффициента полезного использования в 85 %.

Энергию из морских колебаний можно получить, преобразовав движение волн вверх и вниз в электрическую энергию посредством генератора. В простейшем случае генератор должен получать вращательный момент на вал, при этом промежуточных преобразований не должно быть много, а большая часть оборудования должна находиться по возможности на суше.



Авторская идея

Автор давно занимается разработкой проектов использования прибрежной волновой энергии.

В настоящее время морская прибрежная волновая энергия практически не используется, хотя запасы ее неисчерпаемы. Среди возобновляемых источников энергия волны обладает наибольшей удельной мощностью: 15 кВт / погонный метр.

Прибрежная волновая электростанция, по мнению автора, должна удовлетворять следующим требованиям:

1. Энергия волн идет по поверхности, под водой движения практически нет, т. е. забор энергии происходит только с поверхности воды. Движущиеся части под водой исключены. Забор энергии идет в зоне максимальной волновой энергии в полосе прибоя;

2. Используется не только фактор подъема и спада волны, но и фактор движения волн в определенном направлении;

3. То, что станция «прибрежная», предполагает близкое наличие дна, поэтому обязательно использование опоры о дно. Забор энергии волны только от подъема и спада без опоры – неэффективен;

4. Генератор должен обязательно находиться над водой, под водой генератор устанавливать нельзя или практически сложно. Низкоэффективный «линейный» возвратно-поступательный генератор следует исключить.

В основе предыдущей авторской идеи – тележка с килем и баллонами большого диаметра на осях по краям тележки. Это – по примеру одной из осей автомобиля повышенной проходимости с колесами большого диаметра. Сама тележка находится на оси конца силового рычага, другой конец которого – на верху столба (колонны), выполняющего опорные функции. Силовая часть – между опорой (столбом) и верхним концом рычага (патент № 2597342).

Недостаток устройства – удаленность центра тяжести силовой части от оси опорной башенки с опорой на дне, ограничение угла действия силовой части. Эти факторы могут привести к не совсем стабильной работе и в сильный шторм вызвать поломку и отказ в работе устройства.



Новая задача

Задачей являлось создание устройства, позволяющего более свободно и эффективно производить забор волновой энергии с поверхности волн недалеко от берега на небольшой глубине, где максимальна волновая амплитуда, и работа которого слабо зависит от искаженной формы волны, вносимой гребнем (буруном).

Технический эффект такого изобретения достигается путем усовершенствования устройства, которое с помощью рычага с поплавком вращает круговые генераторы, расположенные над поверхностью воды, в котором используется фактор направления движения волн и свойство баллонов тороидальной формы большого диаметра в движении преодолевать крупные волны с закрученным гребнем.



Состав устройства

Предлагаемое устройство состоит из: полой цилиндрической башенки с опорой, корпуса силовой части на верху башенки с возможностью разворота без ограничений на 360 градусов на оси башенки, генераторов на корпусе силовой части, рычага, поплавка на оси внизу рычага в виде тележки с килем и баллонами тороидальной формы на осях вращения по краям тележки. Внутри корпуса силовой части находится втулка с маховым колесом. Втулка соединена с осью, к которой с двух сторон закреплен рычаг, через механизмы одностороннего вращения (храповики). Шестерня на оси генераторов зацеплена с маховым колесом.

На башенку сверху, как продолжение башенки, вставлен держатель колец кольцевого токосъемника, на нем, в свою очередь, установлена шаровая опора для корпуса силовой части, который дополнительно держится не опорном кольце. Между корпусом силовой части и башенкой с держателем находятся игольчатые подшипники. Через нишу корпуса силовой части вставляется щеткодержатель со щетками, которые контактируют с кольцами токосъемника на держателе колец. Провод от генераторов позволяет свободно вытаскивать и вставлять щеткодержатель в нишу. Ниша закрывается крышкой. Провод для потребителя изнутри соединен с кольцами, затем через полую башенку уходит ко дну и далее – на потребителя.



Принцип работы

Волна килем ориентирует корпус силовой части рычагом по направлению своего движения на оси башенки, поднимает рычаг за счет баллонов и с помощью механизма одностороннего вращения раскручивает маховое колесо, которое в свою очередь вращает шестерню с генераторами.

Генераторы, подключенные синфазно, вырабатывают электроэнергию. После прохождения волны рычаг падает, но, т. к. вступают в работу механизмы одностороннего вращения, маховое колесо продолжает вращаться. Следующая волна повторяет цикл, т. е. идет периодическая «подкрутка» махового колеса. Электрический ток от генераторов через провод, контакты кольцевого токосъемника и силовой провод поступает по дну на берег (к контроллеру зарядки, батарее, инвертору и т. д.).

Следует заметить, преобразование механической энергии в электрическую – энергетически достаточно затратный процесс. Безопорный забор энергии волны только от подъема и спада энергетически неэффективен. Заявленное изобретение – наиболее перспективный путь получения и преобразования океанской или морской прибрежной волновой энергии.


Александр САВИН

суббота, 22 декабря 2018 г.

УПРАЖНЕНИЯ СНИМАЮЩИЕ БОЛЬ ПРИ ОСТЕОХОНДРОЗЕ И РАДИКУЛИТЕ. БЕСПЛАТНЫЙ ВИДЕО КУРС

Упражнения снимающие боль в пояснице, проходит остеохондроз, радикулит. БЕСПЛАТНЫЙ ВИДЕО КУРС



Нередко те люди, которые испытывают боль в спине, отмахиваются от этой проблемы, объясняя это тем, что это связано с сидячей работой, или перетрудился, отлежал. Считают, что это пройдет само собой. И хорошо, если это проходит действительно так. Но если у Вас болит спина, это повод для обращения прежде всего к врачу, потому боли в спине, это как правило, симптомы неправильного образа жизни и развиваются вместе с заболеванием. Для кого-то боль в спине считается временным явлением, а кто-то страдает от хронических болей, которые негативно влияют на все аспекты жизни.
Нужно иметь здоровую спину и правильную осанку. А для этого существуют простые способы избавления от болей в спине, которые помогут улучшить свое здоровье. Это физические упражнения, которые помогут избавиться от болей в спине, а конкретно - в пояснице. Они помогут в лечении радикулита, остеохондроза, при грыже диска.
Существуют много способов избавления от болей в спине, но эти упражнения разработаны доктором Евдокименко, полностью безопасны. Но если какое-то из упражнений приносит Вам боль, значит Вам оно не подходит, и делать его не нужно.
Комплекс упражнений имеет противопоказания:
  • переломы, свежие травмы;
  • - болезнь с поднятием температуры;
  • - после операций, надо дождаться выздоравления;
  • - беременным и женщин в в критические дни;
  • - при тяжелых заболеваниях сердца;
  • - после перенесенного инсульта
Упражнения можно делать до нескольких раз в день, на протяжении 3 недель, но по желанию можно продолжить до 2-3 месяцев. Самое минимальное время - 1 неделя, при учете перечисленных выше противопоказаний. 

ОСТЕОХОНДРОЗ ПОЗВОНОЧНИКА НАЧАЛО МНОГИХ БОЛЕЗНЕЙ.


ОСТЕОХОНДРОЗ    ПОЗВОНОЧНИКА - НАЧАЛО МНОГИХ БОЛЕЗНЕЙ.

КАК УЗНАТЬ, ЧТО ВАША СПИНА НУЖДАЕТСЯ В ЛЕЧЕНИИ?

Сначала боли в пояснице, за грудиной, в шейном отделе могут проходить сами по себе. Но потом неприятные симптомы повторяются всё чаще. Ваша спина быстро устаёт, появляется онемение рук и ног – всё это случается, когда болезнь запущена.

В позвоночнике находиться спинной мозг, вдоль него проходит вегетативная нервная цепочка, которая регулирует деятельность всех внутренних органов, эндокринных желез. Больной позвоночник может негативно действовать на работу почек, печение, желудка и даже в целом нарушать гармонию нашего организма. Это приводит к появлению многих тяжёлых заболеваний, на первый взгляд с позвоночником никак не связанных.

Остеохондроз может отрицательно повлиять на:

-руки

-лёгкие

-сердце

-желудок

-печень

-почки

-мочевой пузырь

-кишечник

-половые органы

-ноги

-прямую кишку.

ПОЭТОМУ, ЕСЛИ БОЛЬ В СПИНЕ НАЧИНАЕТ «ПОДНИМАТЬ ГОЛОВУ», НУЖНО ПРИНИМАТЬ МЕРЫ!

КТО МОЖЕТ ЗАБОЛЕТЬ ОСТЕОХОНДРОЗОМ?

Как правило, это:

·         Люди, ведущие сидячий образ жизни.

Такой неутешительный прогноз относится к кассирам, водителям, диспетчерам,  офисным служащим и даже сторожам.

·         Люди, чья работа связана с поднятием тяжестей.

Это строители, штангисты, торговцы на рынках, грузчики, силовые гимнасты.

·         Ещё одна категория- чревоугодники.

Для людей с избыточным весом остеохондроз – «профессиональное» заболевание.

·         Кто в детстве болел сколиозом.

Им в юности следует опасаться постсколиотического остеохондроза.

·         Кто подвержен постоянным стрессам- тоже в группе риска.

·         Стрессовая ситуация может спровоцировать болезнь. И особенно шейный остеохондроз. Дело в том, что в шейном отделе рядом с позвоночником проходят питающие мозг артерии. Смещение межпозвонковых дисков сдавливает их, появляются головные боли, головокружения. Отсюда вспыльчивость, депрессия, тревожное состояние. Мышцы шеи напряжены –постоянная боль провоцирует депрессию, а депрессия- новые неприятные ощущения.



·         Бесплатный курс по лечению болей в пояснице


Как проходит самая масштабная стройка на Северном Кавказе.




21 тыс. просмотров. Уникальные посетители страницы.
7,8 тыс. дочитываний, 36%. Пользователи, дочитавшие до конца.
7 мин 30 секунд. Среднее время дочитывания публикации.Сегодня мы с вами проинспектируем самую масштабную стройку на Северном Кавказе. Я вам покажу самую высоконапорную гидроэлектростанцию (619 м) в нашей стране, плюс к этому она будет иметь и самый протяжённый деривационный тоннель. Его длина - 14 254 м. Но и это ещё не все, оказывается, самые большие турбины ковшового типа в России будут тоже у неё. Между прочим, после того, как Зарамагскую ГЭС-1 ведут в строй, она позволит сократить дефицит электроэнергии в Республике Северная Осетия - Алания с 80% до 30%.




Идея построить Зарамагские ГЭС в этих краях появилась ещё в 1976 году. Потом с переменным успехом перешли к практике. Из-за проблем финансирования стройка периодически буксовала, пока она не оказалась в надёжных руках компании РусГидро.
2. Будущий Бассейн суточного регулирования. Объем этого сооружения, представляющего искусственную бетонную “чашу” на вершине горы, составит 250 тыс. м³, максимальная длина - 235 м, ширина - 80 м, толщина стенок - 17-22 м.



Пуск Головной ГЭС, первой из каскада Зарамагских ГЭС, состоялся 18 сентября 2009 года. Более подробно про неё я рассказывал в прошлый раз https://zavodfoto.livejournal.com/6163741.html. Сейчас данная станция работает в пиковом режиме, осуществляя выдачу необходимой мощности в сеть в часы максимального потребления нагрузок. В настоящее время в соответствии с диспетчерским графиком нагрузок включение производится один - два раза в день. В меженный период она работает несколько часов день с нагрузкой 7 МВт при расходе 31 м3/с до сработки полезного уровня водохранилища. В будущем она будет работать в тесной связке со строящейся Зарамагской ГЭС-1. А так Головная ГЭС предназначена для использования созданного плотиной напора воды, гашения его и подачи воды в безнапорный деривационный тоннель. Далее вода, идущая по водоводу с перепадом высоты в 630 м, в результате такой сложной логистике, поступит на турбины Зарамагской ГЭС-1.



После того, как ввели в строй Головную ГЭС, с переменным успехом продолжились работы над деривационным тоннелем и бассейном суточного регулирования. Так к середине 2013 года было пройдено 12 км деривационного тоннеля, начат монтаж субгоризонтальных водоводов и облицовки шахты, строительство поверхностного водовода было завершено на 90 %. Более активно взялись за ГЭС-1 в 2015 году. Добавили денежек и стройка стала набирать обороты.



В 2016 году были завершены работы по монтажу облицовки вертикальной шахты, велись интенсивные строительно-монтажные работы в субгоризонтальных водоводах и на площадке бассейна суточного регулирования (в частности, начато бетонирование днища БСР). В 2017 году было начато строительство здания Зарамагской ГЭС-1, а также проходка противоаварийного водосброса бассейна суточного регулирования. И вот уже 2018 год, я на месте с блогерской проверкой, буквально прямо с полей отчитываюсь перед вами. В целом размахи строительства, конечно, впечатляют. Взять и срезать часть горы - для энергетиков оказалось совсем не подвиг, на данный момент готовность работ по бассейну суточного регулирования достигает более 80 %, по строительству самой ГЭС более 60 %. Говорят, что совсем скоро Зарамагская ГЭС-1 выдаст свой первый ток. Напомню, запланированная проектная мощность каскада Зарамагских ГЭС (состоящего из Головной ГЭС и ГЭС-1), составляет 352 МВ, а в год они будут вместе выдавать порядка 812 миллионов КВт·ч.



Строительство ГЭС-1 ведется у поселка Мизур. Зарамагская ГЭС-1 - это сложное инженерное сооружение, в значительной степени расположенное под землёй. Так, например, общая протяженность тоннелей составит более 20 км. Комплекс Зарамагской ГЭС-1 включает в себя деривационный тоннель № 2, напорно-станционный узел (бассейн суточного регулирования с холостым водосбросом, водоприёмник, сталежелезобетонный трубопровод, вертикальную шахту, субгоризонтальные водоводы), здание ГЭС и КРУЭ 330 кВ.






Бассейн суточного регулирования (БСР) ёмкостью 144 тысячи м³ (при НПУ 1635,58 м) предназначен для накопления воды перед подачей её на турбины ГЭС. Из себя он будет представлять обетонированную чашу максимальной глубиной 9,8 м, с массивными стенками, в основании которых расположена галерея для отвода фильтрационных расходов и размещения контрольно-измерительной аппаратуры. Отметка нормального подпорного уровня воды в БСР - 1635,58 м, форсированного подпорного уровня - 1641,8 м.



Водоприёмник предназначен для подачи воды из БСР в водовод. Он будет оборудован сороудерживающей решёткой, а также плоскими ремонтным и аварийно-ремонтным затворами, оперирование которыми будет производится при помощи канатного механизма грузоподъёмностью 125 тонн и мостового крана грузоподъёмностью 50 тонн.






Все основные работы проходят в сложных горно-геологических условиях. Строителям приходилось постоянно побеждать местную горную породу. Через каждый метр проходки, после того, как обурили и взорвали породу, необходимо было быстро опустить опалубку и приступить к бетонированию сооружения. А то замешкаешься и произойдет осыпание породы. По сути, это высший пилотаж горного дела.






Безнапорный деривационный тоннель № 2. Он предназначен для подвода воды к напорно-станционному узлу ГЭС, а начинается он у здания Головной ГЭС и заканчивается у бассейна суточного регулирования. Его проектная длина 14 262 м. Эта рекордная цифра для гидротехнических тоннелей в нашей стране. Пропускная способность тоннеля будет составлять 65 м³/сек. Вода будет его проходить всего за 50-80 минут. Для проходки этого тоннеля было организовано 8 забоев, наиболее длинный участок (7635,9 м) расположен между забоями № 5 и № 6. Проходка тоннеля была завершена в конце 2015 года. Если есть второй, значит есть и первый. Ещё раз напомню, я же говорю о целом Каскаде Зарамагских ГЭС. Так вот, как раз деривационный напорный тоннель №1 длиной 678 м, служит для подвода воды от водоприемника к агрегатам Головной ГЭС.
13. Вот так выглядит Деривационный тоннель-2 перед выходом в БСР.












Сталежелезобетонный турбинный водовод имеет внутренний диаметр 4,4 м и длину 602 м. После укладки его засыпали грунтом для защиты бетонной оболочки от внешних воздействий. Далее он переходит в вертикальную шахту (железобетонная обделка с металлической облицовкой) диаметром 3,6 м и глубиной 507 м.



Вертикальная шахта. По ней будет подаваться вода на турбины Зарамагской ГЭС-1. Её глубина - 508 м. Кстати, Вертикальная шахта - это один из самых сложных этапов строительства Зарамагской ГЭС-1. Проходка этого объекта была завершена еще в начале 2000-х годов. В 2014 году начался монтаж его облицовки: стальные обечайки длиной 6 м, диаметром 3,6 м и весом до 22 т опускали при помощи специального монтажного устройства. В общей сложности масса облицовки вертикального водовода составила 1439 тонн. Сдали её строители в 2016 году. Кстати, аналогов и этому объекту на территории постсоветского пространства тоже нет. В нижней части шахты расположена развилка на два субгоризонтальных тоннельных водовода диаметром по 2,5 м и длиной по 1012 м. В конечной части одного из водоводов предусмотрен холостой водосброс в реку Ардон в обход турбин ГЭС.



Вот как-то так эта шахта будет выглядеть по окончанию строительства.






А виды кругом потрясающие


















Вот там, вдали, идут работы по строительству противоаварийного водосброса бассейна суточного регулирования. Важно всё предусмотреть. Так вот, в случае отказа затворов на Головной ГЭС и ГЭС-1 происходит автоматический слив поступающей в БСР по деривационному тоннелю воды, как раз в противоаварийный водосброс, который в свою очередь сбрасывает воду в русло реки Баддон. Его максимальная пропускная способность составляет 70 м3/с, что превышает пропускную способность деривационного тоннеля. Данный водосброс состоит из вертикальной части (шахты), горизонтального участка, выходного портала. Для предотвращения разрушения горного склона на концевом участке водосброса предусмотрен трамплин. Поток воды, падая с большой высоты, превращается в водяную пыль, тем самым теряя энергию. Длина вертикальной части водосброса составляет 80 метров, горизонтальной части - 540 метров.



А теперь мы спустились вниз, на стройплощадку, где будет располагаться само здание ГЭС-1.



Портал тоннеля турбинного водовода.



В здании ГЭС-1 будут установлены два вертикальных гидроагрегата с самыми большими в России ковшовыми гидротурбинами К-600-В6-341,2 (по первоначальному проекту планировались турбины К-461-В-332, затем К-600-В6-334,5), работающими при расчётном напоре 609 м. Диаметр рабочего колеса турбины - 3,345 м, номинальная частота вращения - 300 об/мин. Гидротурбины приводят в действие два гидрогенератора СВ 685/243-20 мощностью по 173 МВт.



По окончанию строительства всё будет выглядеть вот так.



Ковшовые турбины отличаются от других гидротурбин тем, что рабочее колесо турбины не погружено в воду, а вращается под действием струй воды, бьющих из специальных сопел. Поэтому у ковшовых турбин отсутствуют такие элементы, как статор, спиральная камера, отсасывающая труба. Вместо них сооружается стальной кожух, внутри которого размещаются рабочее колесо и сопла. Вокруг кожуха монтируется распределитель - система трубопроводов, подающих воду на сопла.



Производителем гидротурбин является немецкая компания Voith Siemens Hydro Power Generation (представители компании всегда находятся на площадке и помогают всё обустроить и правильно наладить), за гидрогенераторы отвечает новосибирский завод ПАО НПО «ЭЛСИБ», кожух сделан на Балтийском заводе (г. Санкт-Петербург). С целью обеспечения возможности быстрого перекрытия поступления воды к турбинам, здание ГЭС будет оборудовано предтурбинными шаровыми затворами диаметром 2 м, производства завода «Турбоатом».



Будущий козловой кран. Он будет грузоподъёмностью 500 тонн и предназначен для сборки/разборки гидроагрегатов.



Машинный зал будет длиной 42,7 м и шириной 32,2 м.






Монтаж распределителей гидротурбин















Выдача электроэнергии с генераторов будет производиться на напряжении 15,75 кВ на два силовых трансформатора ТДЦ-230000/330-У1 мощностью по 230 МВА, а с них - на комплектное распределительное устройство элегазовое (КРУЭ) напряжением 330 кВ. Выдачу электроэнергии в энергосистему планируется осуществить по двум линиям электропередачи напряжением 330 кВ и длиной по 30 км до подстанции «Алагир».






Кстати, само здание ГЭС будет оформлено в национальном стиле, благодаря чему оно очень гармонично впишется в природный ландшафт Алагирского ущелья.



Отработавшая на турбинах вода будет сбрасываться через отводящий канал в русло Ардона, при этом конструкцией канала предусмотрено его сопряжение с деривацией перспективной Зарамагской ГЭС-2.



Большое спасибо всей пресс-службе ПАО «РусГидро» за такую интересную и познавательную поездку!



Ваш промблогер №1 Игорь (ZAVODFOTO)! Подписывайтесь на мой